A space-time variational approach to hydrodynamic stability theory
نویسندگان
چکیده
We present a hydrodynamic stability theory for incompressible viscous fluid flows based on a space-time variational formulation and associated generalized singular value decomposition of the (linearized) Navier-Stokes equations. We first introduce a linear framework applicable to a wide variety of stationary or time-dependent base flows: we consider arbitrary disturbances in both the initial condition and the dynamics measured in a “data” space-time norm; the theory provides a rigorous, sharp (realizable), and efficiently computed bound for the velocity perturbation measured in a “solution” spacetime norm. We next present a generalization of the linear framework in which the disturbances and perturbation are now measured in respective selected space-time seminorms; the semi-norm theory permits rigorous and sharp quantification of, for example, the growth of initial disturbances or functional outputs. We then develop a (BrezziRappaz-Raviart) nonlinear theory which provides, for disturbances which satisfy a certain (rather stringent) amplitude condition, rigorous finite-amplitude bounds for the velocity and output perturbations. Finally, we demonstrate the application of our linear and nonlinear hydrodynamic stability theory to unsteady moderate Reynolds-number flow in an eddy-promoter channel.
منابع مشابه
A variational approach to the problem of oscillations of an elastic half cylinder
This paper is devoted to the spectral theory (more precisely, tothe variational theory of the spectrum) of guided waves in anelastic half cylinder. We use variational methods to investigateseveral aspects of propagating waves, including localization (seeFigure 1), existence criteria and the formulas to find them. Weapproach the problem using two complementary methods: Thevariational methods fo...
متن کاملVariational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...
متن کاملVariational principle for the relativistic hydrodynamic flows with discontinuities , and local invariants of motion
Variational principle for the relativistic hydrodynamic flows with discontinuities, and local invariants of motion. Abstract A rigorous method for introducing the variational principle describing relativistic ideal hydrodynamic flows with all possible types of discontinuities (including shocks) is presented in the framework of an exact Clebsch type representation of the four-velocity field as a...
متن کاملThermal Stability of Thin Rectangular Plates with Variable Thickness Made of Functionally Graded Materials
In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials (FGMs) with linear varying thickness is considered. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The supporting condition of all edges of such a plate is simply supported. ...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013